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Abstract

An evaluation of different RDF querying methods in the context of
document metadata is presented. Document metadata differs from gen-
eral ontology data as it often has a more tree-like structure with linear
cross-connections. We investigate how well current RDF frameworks can
deal with this particular kind of RDF graphs. For comparison, we use a
straight forward XML serialisation mechanism and standard path-based
technologies like XQuery.



1 Introduction

Ontology querying, in particular RDF querying, is an integral part of current
knowledge engineering. While ontologies are well covered by research, they are
still not as widely used as expected [BT06]. Because ontology creation is only
part of the work, and since ontology use has not yet had a complete breakthrough
even for domains where many ontologies are available, we suspect that improved
querying support could contribute.

Background of the research presented in this report is the Verdikt1 project
which aims at creating an integrated framework for checking document con-
sistency [WJF09, Ver09]. The framework contains an information extraction
component that can extract the document structure, narrative paths and other
relevant metadata such as fragment type, fragment role, and topics addressed.
Input documents may vary over a rather wide range of document formats. As
extracting data from a document is a time consuming task, it is useful to store
the document metadata in the form of RDF data. RDF querying can then pro-
vide the data to form a customised abstract document model for further use in
the consistency checking framework.

Usually, RDF data forms a general graph. However, in the application do-
main of document management one often has a more specific metadata structure
which can be exploited for optimization purposes. Basically, we can assume that
metadata form a tree with linear cross references (cf. figures 3 and 4).
The contribution of this report is an evaluation of how this a-priori knowledge
about metadata structure affects the performance of general graph-based RDF
querying mechanisms, and how well these query languages reflect domain re-
lated requirements. We use XQuery for comparison, running on a serialised
XML view of the test datasets. Since XML querying is generally optimised for
tree structures, this will provide us with an interesting benchmark.

In [HBEV04], a number of RDF query languages have been evaluated in
terms of expressiveness. However, there have been several new language de-
velopments since then, first of all the W3C standard SPARQL [SPQ08] and
some significant changes to SeRQL [SeR08], which motivated the work reported
on in this report. Furthermore, we present performance measurements par-
ticularly concerning tree-shaped metadata, which have apparently not been
analysed before. Some other related work should be mentioned, in particu-
lar [FBB+06, FLB+06], which provide a more general classification of querying
languages and [MKA+02], which contains an overview of early ontology frame-
works.

The remainder of this report is organised as follows: Section 2 outlines the
specific requirements of document metadata. Section 3 gives an overview of
current RDF query languages and frameworks. In section 4, we describe the
evaluation setup, while section 5 presents the preformance evaluation. The
report concludes with a short summary.

1This work is part of a project funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) under grant number FR 1021/7-1.
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2 Requirements

Handling document metadata in the sense described above requires specific
properties of both query languages and storage systems. In some instances,
this results in less stringent demands than for general metadata. In other
instances, the demands are actually higher than for the average case. Also,
document metadata characteristics can offer a potential for optimisation not
available in other cases. The specific requirements and their impact are dis-
cussed in sectsions 2.3 and 2.4. Section 2.1 provides a short overview of the
document processing flow, and section 2.2 illustrates the RDF document model
that is used.

2.1 Document Processing

Documents

Document Model
(RDF Statements)

Verification Model
(Temporal Description Logic)

User Specification

Verification Formula
(Temporal Description Logic)

Result
(OK / Error Report)

User

Specification

Transformation

Model Checking

Information Extraction

Background Knowledge

Generation

Figure 1: Verdikt overview (simplified)

A simplified overview of the Verdikt process for checking consistency criteria
on documents is presented in figure 1 (see [WJF09] or [Ver09] for more details).
The user (top left corner) uses some high-level specification technique to formu-
late consistency criteria for documents [JF08]. These criteria are converted into
temporal description logical formulae (bottom left). The documents selected for
consistency checking (top right corner) are converted into a generic RDF-based
document model (see section 2.2). Combined with background knowledge, a

2



verification model is generated from the document model (bottom right). Both
the formulae and the verification model are then processed by the model checker,
which determines the validity of the formulae and generates an error report for
any violations of consistency criteria.

The document processing component of the Verdikt framework is split into
three parts:

(a) Information Extraction. Relevant metadata is extracted from the
source documents by means of information extraction techniques. The doc-
uments are preprocessed and converted into valid XML code, e.g. from HTML,
LATEX, Microsoft Word, or other source formats. Structural metadata is iden-
tified using code analysis, stylesheet data (CSS), or keyword analysis. Content
information is found by similar means, bolstered by dictionaries and thesauri,
as well as grammar rules for word form recognition. Background knowledge,
e.g. about relevant terms, can be very helpful at this stage.
The extracted metadata information is converted into RDF statements for fur-
ther processing.

(b) Database Storage. Of course, metadata collections can be rather large.
In some cases persistent storage is required. This means that RDF statements
need to be stored in a database system.

(c) Verification Model Generation. The internal verication model is gen-
erated from the RDF metadata (see figure 1, bottom right). To this end a
query language is required. Not only the document metadata but also the avail-
able background knowledge can be taken into account. Background knowledge
may be used to adapt metadata-queries to the particular domain or the specific
context of the document at hand. Background knowledge can also explicitly
contribute to the document model, or help to infer new statements or relation-
ships that have an impact on the verication model.

A more detailed view of the document modelling process is shown in figure 2.
The information extraction returns a list of RDF statements (top right corner),
from which RDF XML code is generated. This RDF code has to be loaded into
the RDF framework that holds the document model (centre). The detour over
the XML code is due to the limitations of the RDF frameworks, as discussed in
sections 3.2.1 and 3.2.2. Following the load step, RDF XML code enriched with
background knowledge is exported from the document model, from which the
verification model is extracted using XQuery. Using the XML code is necessary
due to the limitations of the RDF querying languages, as described in section
3.1. Since there is no unique way of generating RDF XML code from an RDF
graph, the XQuery program has to be adapted to each framework and can only
work with RDF XML code generated in the particular way of that framework.
A method to generate well-defined XML code from RDF is described in section
3.2.3.
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Verification Model
(Temporal Description Logic)

Document Model
(RDF Statements)

Background Knowledge

(#document, doc:Topic, “Example Document”)
(#section1, doc:Structure “Section”)
(#document, ref:Part, #section1)
…

<rdf:Description rdf:nodeID=“#document”>
<doc:Topic>Example Document</doc:Topic>
<ref:Part>

<rdf:Description rdf:nodeID=“#section1”>
<doc:Structure>Section</doc:Structure>

…

Information Extraction

XQuery

XML Generation

RDF Loading

RDF Export

Documents

RDF Statements

RDF XML Code

Figure 2: Detailed view of the document model component

2.2 Document Model

The Verdikt document model is represented by a collection of statements in RDF
form, i.e., as a collection of (Subject, Predicate, Object) triples. Figure 3 shows
an example document, while figure 4 presents the corresponding RDF graph,
i.e., the document model, derived from this document. The example document
has a title “Example Document”, the question “Is this really a SubTopic?” as
a subtitle, and two sections, the first of which contains two paragraphs.

The document model uses a custom RDF vocabulary. Resources represent-
ing structure objects like corpus, document, chapter or section are annotated
with RDF statements such as (#document, doc:Structure, “Document′′), hav-
ing doc:Structure predicates and target “Corpus”, “Document”, “Chapter”
or “Section” literals, respectively. Additional information on the nesting level
of sections can be expressed by the predicate doc:Level. Resources repre-
senting fragment type objects like example, list, question or others are anno-
tated with statements having doc:Fragment predicates and target literals like
“Example” or “List” (not shown in the example document). Structural hier-
archies (e.g. relations between sections and subsections) are modelled using
ref:Part predicates, while cross references are modelled using ref:Reference
predicates, and references concerning the document order are represented by
ref:Successor and ref:Predecessor predicates. Topics and subtopics are
described by doc:Topic and doc:SubTopic predicates, respectively. Initial sec-
tions or paragraphs (in linear document structures such as DocBook) can be
annotated with boolean literals and a doc:Initial predicate. Thus, the first
text unit a reader sees can be identified (cf. #para 1 in figure 4). Docu-
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Example Document

Section 1

Section 2

The first paragraph demonstrates…

The second paragraph clarifies…

Is this really a SubTopic?

Figure 3: Example document

ments existing in several versions, e.g. a version for students and a version for
teachers, can have more than one initial section, while other documents, like a
collection of wikipedia articles, have no clearly defined starting point. Quality
information about certain statements can be annotated with eval:Probability
predicates and target literals having floating point values in the range of 0 to
1, as depicted in the bottom left corner of figure 4. In this case, the statement
(#document, doc:SubTopic, “Is this really a SubTopic?′′) is attached a proba-
bility value of 0.3, meaning that the original statement only has about a one
in three probability of being true. So “Is this really a SubTopic?” might have
been mistaken for a subtopic by the information extraction component. When
dealing with error-prone information extraction on large and complicated doc-
uments, this kind of quality annotation can be critical in later stages of the
document verification process: Either metadata of low quality is disregarded
entirely, or any conclusions drawn from it must be regarded as questionable
when presented to the end user. Otherwise, correct documents can be mistak-
enly marked as erroneous or – worse – erroneous documents can be marked as
valid.

2.3 Query Language Requirements

Figure 5 shows a list of queries often used on document metadata. The first
query is a simple structural distinction. The next four queries are based on
that distinction, but use it as a starting point to extract further information:
The title (query (2)), a list of terms used in that particular structural unit
(query (3)), an optional introductory subsection (query (4)), and all structural
descendants of this unit if any exist (query (5)). The query in line (5) is more
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#section1

“Section”

#document #para_1
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Document”
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#para_2
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“0.3”

doc:Topic
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ref:Part
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“1”
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ve
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do
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l

“true”doc:Initial

eval:Probability
“Section”

“Section 2”doc:Topic

doc:Structure

Figure 4: RDF graph of the example document

complicated than those above it. It has to return all subchapters, sections,
subsections, paragraphs and other structural units that are part of the chapter
selected in the first part of the query. However, since the structural depth of
a document is not generally known, the exact formal query cannot be coded in
advance. Instead, a recursive querying component is required that can traverse
the graph and find all matches reachable from a certain node. Regular path
expressions are the usual way to address this in graph-based query languages.
The query in line (6) determines the structural type of each text unit. Again,
regular path expressions or some other recursive querying construct are required
for this query. The query in line (7) can be used as an addendum to the previous
queries, limiting the result sets of these queries to data with a certain minimum

For each chapter, find the title.

For each chapter, find the introduction (if any).

For each chapter, find a list of used terms.

For each chapter, find all its descendants (if any).

In all queries, find only metadata that has a quality value of 0.75 and above.

For each structural unit, find its type (chapter, section, subsection, etc.).

Find every chapter.(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 5: List of common queries on document metadata
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of quality.
An important aspect of document metadata is that they are often incom-

plete. This can have different reasons. Documents can be fragmented or under
development and therefore not be available completely. Maybe the metadata
have been automatically extracted from a document (see section 2.1). Informa-
tion extraction algorithms are usually incomplete which can cause some meta-
data to be missing. As another reason, the confidence value for some data may
fall below a certain threshold causing some data to be disregarded.
RDF supports the handling of incomplete data directly by its semantics which
is based on the open world assumption: It is not assumed that the negation
of a statement is true just because it is not stored in the database. However,
query languages need to support incomplete data as well by allowing for par-
tial matches. This is usually accomplished through optional subqueries in the
following manner: The main query is formulated as usual, while the data that
may be missing is declared optional. When the query is executed, the result
will then contain all full matches for the main query, combined with matches
on the optional query where data is available (cf. figure 6 and section 3).

RDF statements form a graph, so the query language should reflect this
particular structure. Most RDF query languages are syntactical heirs of SQL,
but are adapted to be better suitable for matching triples. By combining sev-
eral triple matches, it is possible to query entire subgraph structures. Some
languages provide abbreviated syntax options to facilitate a more convenient
mapping of graph structures to linear query strings. However, different from
XML there is no generic concept of querying RDF graphs in a path-based man-
ner.

Queries on document metadata frequently follow a specific pattern: They
isolate one or a few nodes in the document tree and then focus on the subtrees
below these nodes (cf. figure 5). For a single query, it is thus useful to be
able to reference a specific node, which has been identified in the main query,
from different subqueries. It would also be useful to be able to reference nodes
identified in previous queries, so that the subtree identification does not have to
be reiterated. With the nodeID attribute, RDF provides the necessary mech-
anism. The nodeID attribute uniquely identifies an RDF resource in the RDF
metadata collection. If a node is returned as the result of a query, if should be
possible to reference this particular node from other queries by referencing its
nodeID. In practice, however, some RDF frameworks assign temporary nodeIDs
to RDF nodes returned as query results, which are unique (and valid) only in
the context of this single result set.

Another query pattern often found in document queries is recursion of an
unknown depth: If no upper bound for the document depth is known, then
without this ability it is impossible to specify a query reaching every part of a
document.

An additional requirement of query languages is the support of reification.
Reification means having statements about other statements. Document meta-
data is frequently annotated with quality information from the information ex-
traction (see figure 4), or with further clarification on relationships between

7



document fragments. This is usually expressed via reification. As an example,
let A, B and C be statements. A reads “Section 2 references section 1.”, B reads
“Statement A has only a 5 percent probability of being true.”, and C reads “The
reference in A is a textual reference only.”. The data from statements B and C
would be lost if reified statements could not be accessed in queries.

2.4 Storage Requirements

The first requirement of an RDF storage solution for document metadata is of
course to satisfy the specific query requirements (see section 2.3 above).

While pure RDF triple stores are easy to implement, a more efficient
method for data retrieval is desireable [SGK+08]. Current research has shown
some interesting solutions, but most are only available as prototypes if at all
[AMMH07, UPS07, SJ07]. There are also questions about the actual effective-
ness of these new approaches: Results seem to vary widely depending on the
query [SGK+08].

Document metadata offer some potential for optimised data storage. Apart
from the tree-like structure, two starting points shall be named here: First, a
path-based index representing the potential paths through a document. Second,
a context-based index, which takes advantage of the fact that document data
is usually used in some specific combinations, but not in others. For example,
title information is usually queried in combination with structural data (cf. 5,
second query), but title information and data about references are rarely needed
in combination.

3 RDF Querying Languages and Frameworks

In this section, we will give an overview of currently available RDF query lan-
guages and of state-of-the-art RDF frameworks that support querying. We will
describe their properties and evaluate their usefulness for RDF metadata rep-
resenting documents.

3.1 Languages

There are several different query languages [FBB+06, FLB+06, HBEV04,
MKA+02] that can operate on RDF. The query languages RDFPath, RPath
and RxPath2 use a data model similar to XPath [Swa01, MKKS04]; however,
until today no implementation is available for RDFPath and RPath, and only
an outdated (early 2006) and rather limited alpha version of RxPath. These
languages will not be considered here. Other query languages like TreeHugger
or RDF Twig are implemented as an XSLT extension [Ste03, Wal03]; however,
they have not been maintained since mid 2004 or mid 2003 respectively. There-
fore, and because both are available only as prototypes, we will disregard them
as well.

2http://rx4rdf.liminalzone.org/RxPath
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Figure 6 shows an abstract graphical representation of the basic query used
as an example in the following sections. It retrieves all topics of documents that
are part of a larger corpus, and tries to retrieve a subtopic as well, if one exists.
The result of this query, when applied to the short example document shown
above in figure 3 is listed in figure 7. Figure 7 also includes a second result
set that would apply if the query had been extended with a quality clause as
mentioned in figure 5, query (7).

?corpus ?document

“Corpus” “Document”

?topic ?subtopic

Return all
values for
?topic

and
?subtopic.

optional

doc:Structure

doc:Topic doc:SubTopic

doc:Structure

ref:Part

Figure 6: Graph representation of an example query

1 ?topic = “Example Document”, ?subtopic = “Is this really a SubTopic?”
# Variables

1 ?topic = “Example Document”, ?subtopic = { }
# Variables

(a) Standard Query

(b) Query limited to metadata with probability values of 0.75 and above

Figure 7: Result of the example query applied to the example document

3.1.1 SquishQL and RDQL

SquishQL is an RDF query language with a simple, SQL-like syntax [MSR02].
RDQL is based on and implements SquishQL, and is thus very similar regarding
both syntax and semantics. Since RDQL is supported by the Jena Framework
(see below), we will concentrate on RDQL.

In RDQL, queries consist of four parts. A SELECT clause, which lists all
variables that should be returned; a WHERE clause, which holds the actual query;
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an optional AND clause, which lists constraints on variables used in the query;
and an optional USING clause, which declares abbreviations for URIs [Sea04].

The WHERE clause can consist of multiple triple patterns, each of the form
(subject predicate object). Each subject, predicate and object can be
a variable (denoted by a question mark “?”) or a URI, while the object can also
be a literal. Variables can be used to identify RDF nodes common to more than
one subquery, similar to a join condition in standard SQL or common variables
in logic programming (e.g. the ?document variable in the following code). The
total set of all possible variable assignments conforming to the pattern defined
by the query is the possible result set. The actual result set can be obtained
by restricting the set of variables, similar to a projection in the SELECT clause
of standard SQL. URIs can identify resources. This is used mostly for RDF
vocabulary like doc:Structure or to identify web resources.

The following example query returns the topic of all documents that are part
of a larger corpus (see figure 6):

SELECT ?topic

WHERE (?corpus doc:Structure ‘‘Corpus’’),

(?corpus ref:Part ?document),

(?document doc:Structure ‘‘Document’’),

(?document doc:Topic ?topic)

USING doc FOR <http://.../document> ref FOR <http://.../reference>

The first triple pattern (?corpus doc:Structure ‘‘Corpus’’) matches
the variable ?corpus against all resources that are subjects of statements with
the URI doc:Structure as the predicate and the literal ‘‘Corpus’’ as the
predicate. The second triple pattern takes all matches found for ?corpus in
the first pattern and matches them against all statements having a ref:Part
predicate and one of the ?corpus-values just found as a subject. The object
of each of these statements is bound to the variable ?document. For the next
pattern, the ?document-values are used and further matches are found, until all
possible values of the variable ?topic have been determined. These are then
returned as specified in the SELECT clause.

RDQL does not support inference, so to be recognised, any RDF state-
ment has to be explicitly mentioned in the RDF data. RDQL also does not
support optional patterns. This makes it impossible to deal with incomplete
data in a sensible manner. If, for example, we do not only want to return the
topics of documents, but also their subtopics, we would add a triple pattern
(?document doc:SubTopic ?subtopic), and add the variable ?subtopic to
the SELECT clause. However, now only documents actually having a subtopic
will be regarded, while those that do not will not be included in the result. To
express that subtopics should be included if they are available, we would like to
declare the subtopic pattern to be optional, which RDQL does not allow. For
querying document metadata, where the availability of specific metadata can
vary from file to file, this is a serious drawback. Other language constructs such
as UNION or INTERSECT operators, which could be used as a work-around, are
not supported either. In principle, it would be possible to formulate two sep-
arate queries, one with and one without the subtopic clause. Lacking a UNION
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operator, the result sets could still be combined externally. This would require,
however, that the IDs of nodes remain unchanged between query results. As
described below (section 3.2), this is not generally the case.

As of early 2005, the Jena Framework, while still supporting RDQL, recom-
mends using SPARQL instead.

3.1.2 SPARQL

Since early 2008, SPARQL [SPQ08] is an official W3C recommendation. It
became a candidate recommendation in 2006, but was pushed back to working
draft status until mid 2007, when it became a candidate recommendation again.
It can be seen as an amalgamation of several predecessors, most notably RDQL.

Basic SPARQL queries look similar to RDQL queries, with a few syntactical
exceptions. Namespace abbreviations are not defined in an appended USING
clause, but in a PREFIX clause at the beginning. Triple patterns are not enclosed
in parentheses any more, and they are not separated by comma “,”, but by
periods “.”. The content of the WHERE clause is enclosed in curly breackets,
and multiple patterns can be grouped in curly brackets as well. Filters are now
part of the WHERE clause, with the keyword FILTER instead of AND. Variables are
denoted as above and have the same uses.
Optional patterns or pattern groups are indicated by the keyword OPTIONAL.
Marking patterns as optional means that they will be part of the result set if a
match is found, but no data are excluded from the result set if no match can be
found. Results of patterns can be combined using the UNION command.
SPARQL also offers commands such as DISTINCT, LIMIT or ORDERBY, known
from standard SQL, as well as many syntactical abbreviations.

In SPARQL, the (extended) example from above would look like this:

PREFIX doc: <http://.../document> PREFIX ref: <http://.../reference>

SELECT ?topic ?subtopic

WHERE { ?corpus doc:Structure ‘‘Corpus’’ .

?corpus ref:Part ?document .

?document doc:Structure ‘‘Document’’ .

?document doc:Topic ?topic .

OPTIONAL { ?document doc:SubTopic ?subtopic }

}

Again, variables are used to specify join conditions like in RDQL (see section
3.1.1). Resolving the triple patterns works in the same way as for RDQL, except
for the additional OPTIONAL pattern, which is simply added to the result set
where available.

SPARQL does not support regular path expressions, making queries over a
graph of unknown depth impossible. It is, for example, not possible to return
all descendants of an object (unless one knows an upper bound of their depth
and is prepared to formulate a huge query):

?object ref:Part ?part .

?object ref:Part ?tmp1 . ?tmp1 ref:Part ?part .

?object ref:Part ?tmp1 . ?tmp1 ref:Part ?tmp2 . ?tmp2 ref:Part ?part .

...
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3.1.3 RQL and SeRQL

As with RDQL and SPARQL, the RQL syntax is based on SQL. The original
RQL was introduced in [KAC+02]. However, the development seems to be
stagnant since 2003. The Sesame Framework supports a revised and extended
version of RQL, SeRQL [BK03], which we will analyse here instead. SeRQL
also solves several problems of RQL, such as distinguishing between URIs and
variables, literals, and a few syntax issues [Fra03].

The general capabilities of SeRQL are close to those of SPARQL, both lan-
guages having influenced each other in their development. The SeRQL syntax is
quite different, though (but still similar to SQL). It has a SELECT clause, which
lists the variables to be returned. The triple patterns are listed in the FROM
clause, separated by comma “,”. Subjects and objects of triples are enclosed in
curly brackets; literals are also enclosed in quotes, URIs in angle brackets, and –
in contrast – variables are not marked at all. Despite the syntactical differences,
variables are used exactly the same way as in RDQL and SPARQL (sections
3.1.1 and 3.1.2). Optional patterns are enclosed in square brackets. Namespace
abbreviations are declared similarly to RDQL, with a USING NAMESPACE com-
mand. As opposed to SPARQL, filters can be defined in the WHERE clause.
SeRQL supports many syntactical abbreviations, including narrowing the fo-
cus to subgraphs, as well as many advanced commands such as LIKE, LIMIT,
INTERSECT or UNION, offering a broader variety than SPARQL. However, it does
not support regular path expressions, thus causing the same problem as with
SPARQL [HBEV04].

The example from above written in SeRQL now reads:

SELECT topic, subtopic

FROM {corpus} doc:Structure {‘‘Corpus’’},

{corpus} ref:Part {document},

{document} doc:Structure {‘‘Document’’},

{document} doc:Topic {topic},

[ {document} doc:SubTopic {subtopic} ]

USING NAMESPACE doc: <http://.../document>, ref: <http://.../reference>

Resolving the triple patterns works the same way as for SPARQL.
SeRQL also supports the construction of RDF graphs as the result of a query,

but cannot insert this graph into the database or modify the original data in
any way. This capability can be understood as providing a static view of part
of the current data.

Despite the re-advent of SPARQL, SeRQL still remains an important rival,
owing to its extended syntax and semantics, as well as to its efficient implemen-
tation.

3.2 Frameworks

Currently, few RDF frameworks have survived the development rush of 2000
through 2006 [FBB+06, MKA+02]. The two main frameworks that have been
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firmly established are Jena3, developed by Hewlett-Packard, and Sesame4, main-
tained by Aduna. Both are open source frameworks and freely available. Red-
land [Bec01] is a set of C libraries for RDF. Since it currently supports only
RDQL and parts of SPARQL, we will postpone its examination.
For the evaluation, we will compare both the Jena and the Sesame frameworks,
as well as a simple XQuery applied to an XML view of the data for comparison.

3.2.1 Jena

RDF data is stored in Jena either in main memory, or in a persistent model
using an RDBMS. In the database, triples are stored in a single table, only
literals or URIs longer than a predefined threshold are moved to a separate
table. This method reduces the number of joins neccessary for a query, but
increases the database size. Property tables are used to group statements for
specific properties, again increasing database size but making query evaluation
more efficient [CDD+04]. [AMMH07] states that this approach is superior to a
generic triple store, but also proposes another, possibly even more advantageous
method. However, there is not yet a general consensus as to the optimal solution
[SGK+08]. Further optimisations for indexing RDF data in relational databases
are proposed in [MAYU05].

Jena provides three methods for querying RDF data. First, a Java API can
be used to access the RDF graph directly. Second, the RDQL query language
and third, the SPARQL query language are supported. The latter two allow
only read access. Even though SPARQL queries can construct and return new
RDF triples, these cannot be inserted into the existing RDF data. A serious
drawback of the Java API is its lack of support for reification: Statements about
other statements are impossible to represent. The only way to correctly deal
with reification is to work around the API. To insert new reificated data, RDF
code can be generated using some external means and then imported into the
data store. For retrieval or querying, the RDF export (see section 2.1) or one
of the supported query languages can be used. A workaround using proprietary
context information for statements is available, but violates the RDF standard.
Since RDF nodeIDs are not maintained (or at least not published), referencing
nodes accross queries is impossible without reiterating the previous query that
returned the node in the first place. Jena assigns each blank RDF node a
temporary ID that is valid (and unique) for the current query only. As of this
moment, the authors are not aware of any efficient workaround for the missing
persistence of nodeIDs.

The current version of Jena referred to in this evaluation is Jena 2.5.6.

3.2.2 Sesame

Sesame supports three ways to store data – in main memory, or in a persis-
tent binary storage being part of the file system (called “native store”), or in a

3http://jena.sourceforge.net/
4http://www.openrdf.org/
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database system. There are actually a number of implementations for various
database engines, such as PostgreSQL, MySQL or Oracle (version 9i and above).
The implementation for PostgreSQL, for example, makes use of subtables, which
are not part of the SQL standard. Each class or property is stored in a sep-
arate table, and the RDF subclass and subproperty relations are represented
as ProstgreSQL subtable relations, thus projecting a feature of the RDF lan-
guage directly onto a feature of the database. For other database management
systems, a fixed schema is used with tables for classes, triples, properties, and
relations between classes and properties [BKH02]. The current implementation
of Sesame officially supports MySQL and Oracle, but can be used with other
DBMS as well. Further optimisations for indexing RDF data are proposed in
[HLQR07].

Querying a Sesame repository can be done either via a Java API or by using
the SeRQL query language. Both methods support data retrieval, but only
the Java API supports data modification. Unfortunately, Sesame suffers from
the same detriments as Jena, namely the non-support for reification and for
persistent nodeIDs. This makes handling reified statements rather tedious and
inefficient. However, the same reification workaround available for Jena can be
used for Sesame as well. For nodeIDs there does not appear to be a viable
solution for Sesame either.

The current version of Sesame referred to in this evaluation is Sesame 2.2.

3.2.3 XML View

The XML view is a serialisation of the RDF graph into an XML document, using
the standard names from the RDF vocabulary for naming the corresponding
XML elements. As mentioned before, this is straightforward because the RDF
graph is in fact very close to a tree in our particular case. As can be seen in
figure 4, metadata graphs for documents tend to have a structure reminiscent
of trees, except for shared literal values and for references. Cross references are
usually the main reason why document metadata graphs cannot be modelled as
plain trees.
Queries can be formulated in XQuery and answered using an XQuery engine. As
such, this method is not a framework in itself, but rather serves for comparison.

For a given RDF graph the generation of the associated XML view follows
these steps:

1. List all root objects (objects with statements going out, but none coming
in).

2. For each root object do: Create an empty object element with an id
attribute representing its name, URI or identifier.

3. For each outgoing statement pointing to a literal: Create a subelement
using as a tag name the original predicate name, with a data attribute
holding the literal’s value, and a format attribute holding the literal’s
type.
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4. For each outgoing statement pointing to a resource: Create a subelement
using as a tag name the original predicate name, with an id attribute
holding the resource’s name, URI or identifier.

5. Reification: If an outgoing statement s1 is the subject of another state-
ment s2, create a subelement statement as a child of the element created
for s1. This statement element then gets a new subelement according to
steps 3 or 4.

6. Repeat recursively from step 3, but do not follow statements that have
already been serialised on the current path (thus preventing infinite re-
cursion).

The idea underlying the XML views is that they more closely represent
the tree-shaped RDF graphs of documents, thus making path-queries simpler
and more efficient than in the standard W3C RDF/XML formulation. The
corresponding XML view for the RDF graph in figure 4 about the example
document is:

<object id=‘‘document’’>

<doc:Structure data=‘‘Document’’/>

<doc:Topic data=‘‘Example Document’’/>

<doc:SubTopic data=‘‘Is this really a SubTopic?’’>

<statement><eval:Probability data=‘‘0.3’’/></statement>

</doc:SubTopic>

<ref:Part id=‘‘section1’’>

<doc:Structure data=‘‘Section’’/>

<doc:Topic data=‘‘Section 1’’/>

<doc:Level data=‘‘1’’/>

<ref:Part id=‘‘para_1’’>

<doc:Initial data=‘‘true’’/>

<doc:Level data=‘‘2’’/>

</ref:Part>

<ref:Part id=‘‘para_2’’>

<doc:Level data=‘‘2’’/>

</ref:Part>

<ref:Successor id=‘‘section2’’>

<doc:Structure data=‘‘Section’’/>

<doc:Topic data=‘‘Section 2’’/>

<doc:Level data=‘‘1’’/>

</ref:Successor>

</ref:Part>

<ref:Part id=‘‘section2’’>

<doc:Structure data=‘‘Section’’/>

<doc:Topic data=‘‘Section 2’’/>

<doc:Level data=‘‘1’’/>

</ref:Part>

</object>

Since XPath does support recursive queries of unknown depth, and because
the implementation of the XML view allows both referencing of any node pre-
viously identified as well as reification, this approach does not suffer from any
of the drawbacks described for Jena or Sesame.
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The XML view has been generated using Qexo5, the GNU Kawa implemen-
tation of XQuery, using a custom implementation of a DOM tree to generate
the actual view.

4 Evaluation Setup

The evaluation, which uses five different RDF datasets and six different queries,
has been executed on an Intel Core 2 Duo machine running at 2.13 GHz, with
2 GB of RAM, under Windows XP SP2.

4.1 Data

VDK1108 The first dataset is a representation of a technical documentation
which has been created artificially but modelled realistically, closely resembling
a real documentation of a real product. It describes the use of an imaginary
HDTV satellite receiver “VDK1108”. The document consists of 24 chapters
on 88 pages. The RDF metadata contains a total of 297 resources and 650
statements, including 75 ref:Part statements.

DocBook The second dataset is a document in DocBook6 format, the “Bash
Guide for Beginners” Version 1.9 by Machtelt Garrels, available under the GNU
Free Documentation License, Version 1.1. The document consists of 17 chapters
on 173 pages. The RDF metadata contains a total of 1.987 resources and 6.679
statements, including 1.585 ref:Part statements.

DITA The third dataset is an artificially created document in DITA7 format.
It consists of 2.000 DITA Topics which are linked both in a linear fashion and in
a more complex pattern of back- and forward links, including cycles. The RDF
metadata contains a total of 7.484 resources and 17.819 statements, including
4.605 ref:Part statements.

Wiki10 The forth dataset is a snapshot of 10 English Wikipedia8 articles
focused on human anatomy. The articles are linked to each other and contain
various sections and subsections. The RDF metadata contains a total of 1.527
resources and 3.059 statements, including 752 ref:Part statements.

Wiki100 The fifth dataset is a larger snapshot of 100 English Wikipedia
articles, again focused on human anatomy. The RDF metadata contains a total
of 13.166 resources and 29.431 statements, including 7.231 ref:Part statements.

For single documents, our test datasets contain realistic amounts of meta-
data. Each dataset was subjected to our information extraction process, and
the resulting metadata was written to an XML RDF file.

5http://www.gnu.org/software/qexo/
6http://www.oasis-open.org/docbook/
7http://www.oasis-open.org/committees/dita/
8http://en.wikipedia.org

16



4.2 Queries

All test queries are formulated in such a way that their answers have the form
of an XML representation of an abstract model of the original document for
further use in the course of document consistency checking. This does not,
however, lower the generality of the test queries.

Query 1 The first query simply returns the resource representing the entire
data corpus.

Query 2 The second query returns a list of all chapters/sections of the
document.

Query 3 The third query annotates this list with information about which
chapter is the starting point of the document. Note that since there is no
“initial” Wikipedia article, query 2 is substituted in place of query 3 for the
evaluation of the Wiki10 and Wiki100 datasets.

Query 4 The fourth query adds a list of all successors and references to
each chapter.

Query 5 The fifth query adds a list of all examples and other fragment
types contained in each chapter.

Query 6 The sixth query adds a list of all topics dealt with in any fragment
of each chapter.

4.3 Document Processing Tests

For further tests, we have also prepared a real document processing exam-
ple from the Verdict project. A set of eight e-learning documents9 is used
to extract relevant data and generate document models: ESmkA (real-time
scheduling with critical sections), ESokA (real-time scheduling without critical
sections), EZKom (real-time communication), MLP (multilayered perceptrons),
Fuzzy (fuzzy systems), SN (combinatorial circuits), SOM (self-organising maps)
and SW (sequential circuits). Each model contains between 25.000 and 45.000
statements, but only a few thousand resources, limiting the memory require-
ments. This is due to the nature of e-learning documents, where topics are
frequently repeated and occur in different contexts.

5 Experimental Results

In this section, the experimental results for the initial data processing (e.g.
loading the RDF data) and for the actual query processing will be presented.
Afterwards, we will run an additional evaluation on the e-learning data set, using
those storage method(s) that have exhibited the best results in the previous test
runs. The results of this second experiment are then shown in section 5.3.
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5.1 Data Processing

As shown in figure 8, both the Jena and the Sesame framework create the data
repository and load the RDF data in under four seconds. To provide a stable
and easily replicable base for comparison, the information extraction for the five
datasets has been done in a preprocessing step, and the metadata have been
stored in an RDF XML file. The load time is the time required to load one
of these XML files into the RDF repository (see section 2.1 and figure 2). The
largest of the datasets, Wiki100, could not be loaded by the Sesame native store.
It is noteworthy that the native, file-based Sesame repository, took between two
and four times as long for set up as the main memory-based repository. The
straightforward method creating XML views is completely outclassed for the
data sets (cf. figure 9). Wiki100, for instance, could not be loaded at all using
this method.

Figure 10 shows that loading times for repositories using a database for
storage are much higher than for those storing their data in main memory or even
the file system. The Jena framework in combination with MySQL exhibited by
far the longest load times. On average, Sesame together with MySQL has been
the fasted combination, followed by Sesame in combination with PostgreSQL.

9http://lrs2.fim.uni-passau.de/online/index.html
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5.2 Query Processing

Query Processing
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Figure 11: Query processing times: Storage in main memory and file system

Figures 11 and 12 show overviews of all query execution times. The y-
axis shows the time in seconds on a logarithmic scale, while the x-axis lists all
datasets in combination with each framework.

It is interesting to observe that the query processing time of the XML view
method applied to the DITA dataset is much higher than when applied to the
other datasets. The reason lies most likely in the very complex structure of
the DITA document, leading to many references. These have to be resolved
by matching IDs, which is not a strong point of XPath. Using an XQuery of
comparable complexity but without dereferencing IDs took only a fraction of
the run times, thus supporting our hypothesis.

As another interesting result, the query times for the DITA and DocBook
datasets do not differ significantly, even though the DocBook dataset contains
several times as many resources and statements. The more complex structure
of the DITA dataset likely cancels out any advantage caused by its smaller size.
This conjecture is supported by the fact that the DocBook dataset takes more
time on the sixth query, which adds complexity at a local level, independent of
the complexity of the document structure.

Again, the XML view shows an interesting effect: The execution times of the
first query are higher than those of the second query, and the times of the sixth
query are actually slightly lower than those of the (less complex) fifth query.
This is likely due to caching of XML subgraphs and XPath results.
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Figure 12: Query Processing times: Storage in database system

The results obtained by queries five and six on both Wiki datasets are incom-
plete for the Jena framework in combination with main memory-based repos-
itories. Jena in combination with a database also returned empty results for
all queries on the DITA dataset, and empty results for queries four through
six on both Wiki datasets. Since the Jena query is basically the same as the
Sesame query (just in SPARQL instead of SeRQL), and literally the same for
the different Jena repositories, we suspect an inconsistency in the language im-
plementation or an internal error. Given the difference in performance between
Jena and Sesame, this has no bearing on the conclusions of this evaluation.

Comparing the results for the structurally simple VDK1108 dataset with
those for the more complex DITA dataset shows that this structural advantage
cannot be exploited effectively. It might be possible to extend current frame-
works with a path index that makes use of the additional information.

The Sesame native (file-based) repository does not only take longer to ini-
tialise, but also performs worse than the main memory-based repository. This
result was of course to be expected and, in combination with the native store’s
inability to load the largest dataset at all, confirms our assumption that for RDF
graphs of document metadata, a main memory-based store might be preferrable.

According to the results of the evaluation, the Sesame main memory-based
repository is recommended for querying tree-like RDF structures. For very large
documents that rarely change, a database-driven Sesame store can be a good
alternative.

5.3 Document Processing and RDF Generation

Summarising the results of our experiments so far, we decided to use both the
Sesame RDF database and a main memory repository to perform a complete
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run of the information extraction component of the Verdikt project on several
relevant documents (see section 2.1). This entails the actual metadata extrac-
tion and RDF import into the respository. Since the available query languages
were insufficient (cf. section 3.1) to facilitate the selection and filtering of the
metadata as required for the generation of a verification model, we opted to
test exporting the complete RDF data to an RDF XML file instead. Evaluation
results for eight documents are shown in figures 13 and 14.
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Figure 13: Information extraction: Comparison of performance for RDF
database and main memory model

It is obvious and not entirely surprising that the main memory model out-
performs the database repository by a considerable margin for the information
extraction/data import (see figure 13). The database repository needs to re-
format the statements and distribute them over the neccessary tables, while
the memory model can simply keep them “as-is”. Even more importantly, the
database storage engine writes the data on a slower hard disc drive. This is nec-
cessary for very large document models not fitting into main memory or when
persistent storage is required, but has to be paid for in runtime performance.
In absolute figures, information extraction time for the SN module was about
thirty minutes using the database repository, and less than fifteen minutes for
the main memory model. For the EZKom module, the values diverge even
more, with about 18 minutes and just under four minutes (less than a quarter)
respectively.

For RDF export (figure 14), the differences are less pronounced yet more
interesting. It would have seemed likely that a database, using index structures
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Comparison: DB vs. Memory (RDF Export)
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Figure 14: RDF export: Comparison of performance for RDF database and
main memory model

and other optimisations, could easily outperform a main memory model. The
latter has yet to generate the data representing the relationships between dif-
ferent statements, which are required to create an effective RDF model from its
list of separate statement triples. Grouping statements by subject – as is neces-
sary for a concise RDF model – can be carried out by a simple join operation.
However, in this case, the RDF-specific optimisations of Sesame (see section
3.2) can decrease the performance, because all the predicate tables have to be
joined to get all subjects. While this disadvantage could have been avoided
through additional subject-centred tables, the cost in storage space and dupli-
cation effort would have been prohibitive. Apparently, the superior coherence
information of the database does not compensate for the speed advantage of
pure main memory data retrieval. It is also possible that the model size is still
too small to exhibit possible performance advantages of the database system. If
this is the case, it might be evident in a relative performance increase (database
vs. main memory) for the larger models, esp. Fuzzy and SN. However, such an
increase could not be observed.

These findings affirm and reemphasise the results of the previous parts of
the evaluation, that a database-driven model should be used for large and static
documents, while a main memory repository should be preferred whenever pos-
sible, namely for smaller document models.
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6 Conclusion

The native store (Sesame only) fails in our evaluation because a stack overflow
prevents the processing of large datasets and the performance is worse than that
of the main memory stores. The XQuery approach fails because of the necessity
of many ID references and because the extraction times are rather high. The
Jena framework in its current version returns invalid results on several occasions.
It also does not work with PostgreSQL versions newer than 8.2.

In general, the Sesame main memory repository outperforms the Jena main
memory store. Comparison between the complex DITA structure and the sim-
pler VDK1108 and Wiki structures shows that the RDF frameworks cannot ef-
fectively take advantage of the simplified structures. Future research is needed
here, most probably along the lines of path indices.

The majority of query languages do not support recursive path queries. Since
documents usually have a fixed depth, this is more of an inconvenience than an
actual problem. It does, however, make effective queries very large, cumbersome
to write, and hard to maintain. Hopefully, future developments will provide
public frameworks with support for recursive paths.

The inability of both Jena and Sesame to handle reified RDF statements
correctly is a serious drawback when dealing with extended document meta-
data. This data may include quality and probability information related to the
information extraction process, which is usually attached as an annotation to
the original statements via reification. So far, no satisfactory solution has been
found to this problem.
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